arXiv:1603.09155v1 [math.OC] 30 Mar 2016

LEARNING OPTIMAL SPATIALLY-DEPENDENT REGULARIZATION
PARAMETERS IN TOTAL VARIATION IMAGE RESTORATION*

V.C. CAOt, J.C. DE LOS REYES', AND C.B. SCHONLIEB?

ABSTRACT. We consider a bilevel optimization approach in function space for the choice of
spatially dependent regularization parameters in TV image restoration models. First- and
second-order optimality conditions for the bilevel problem are studied, when the spatially-
dependent parameter belongs to the Sobolev space H'(Q2). A combined Schwarz domain
decomposition-semismooth Newton method is proposed for the solution of the full op-
timality system and local superlinear convergence of the semismooth Newton method is
analyzed. Exhaustive numerical computations are finally carried out to show the suitability
of the approach.

1. INTRODUCTION

Let € R? be an open, bounded domain and f € LP(Q), for some p > 2, a given noisy
image. For removing the noise, Total Variation (TV) regularization is frequently considered
(see e.g., |1L3-5]). The idea is to reconstruct a denoised version u of f by minimizing the
generic functional

F(u) = |Dul(Q) —i—/Q)\qﬁ(u,f)dx

where |Du|(£2) = sup JouV -vdx is the total variation of u in Q, X is a positive
veCEe (QR?),[lv]|<1

parameter and ¢ is a suitable fidelity function, dependent on the type of noise included in
f-

The parameter A\ can be either a positive constant or a spatially dependent function
A Q — RT. If A € R, the parameter serves as a weight between the fidelity measure
and the TV-regularizing term. On the other hand, if A is considered as spatially dependent,
ie., A: Q — RT, it can also reflect information on possibly non-homogeneous noise in the
image, as well as making a difference between regularization of small and large scale features
in the image. Hence, A has a key role in spatially balancing the amount of regularization.
Spatially dependent parameters have been considered in the recent papers [2}8}19,20].

The choice of an appropriate regularization parameter A is a difficult task and has been
the subject of many research efforts (see, e.g., [8,10-12,14,26,27,129]). In [7], a bilevel
optimization approach in function space was proposed for learning the weights between noise
model and TV-regularization. In the flavour of supervised machine learning, the approach
presupposes the existence of a training set of clean and noisy images. Existence of Lagrange
multipliers was proved and an optimality system characterizing the solution was obtained.
The analytical results hold both for A € R* and A\ : Q — R™, while a solution algorithm was
only designed for solving the bilevel optimization problem with A € R™. A related approach
for finite-dimensional variational problems was proposed in [18§].

In this article we consider a bilevel optimization approach with a spatially dependent
parameter A € H'(€), and investigate first- and second-order optimality conditions for the
bilevel problem. In addition to the nonsmooth lower level denoising problems, a positivity
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constraint on the functional parameter (A > 0 a.e. in §2) has to be imposed to guarantee well-
posedness. These elements lead to a nonlinear and nonsmooth first-order optimality system
with complementarity relations. For proving second order sufficient optimality conditions,
we improve previous Géateaux differentiability results [7] and show that the solution mapping
is actually twice Fréchet differentiable. We then define a suitable cone of critical directions
and utilize a contradiction argument.

Since the resulting optimality system involves several coupled PDEs (twice the size of
the training set), the efficient numerical solution of the problem becomes challenging. We
consider a combined Schwarz domain decomposition-semismooth Newton approach, where
the domain 2 is subdivided into overlapping subdomains €2; with "optimized" transmission
conditions (see, e.g., [13}/24,25]). In the spirit of [9], we apply Schwarz domain decomposition
methods directly to the nonlinear optimality system rather than to a linearisation of it,
and solve, in each subdomain, a reduced nonlinear and nonsmooth optimality system. We
propose a semismooth Newton algorithm for the solution of each subdomain system and
analyze the local superlinear convergence of the method.

The outline of the paper is as follows. In Section 2 the bilevel optimization problem
is stated and analyzed. The analysis involves differentiability properties of the solution
operator and the derivation of first and second order optimality conditions. The numerical
treatment of the problem is considered in Section 3. The discretization of the problem is
described and the domain decomposition and semismooth Newton algorithms are presented.
Also the convergence analysis of the semismooth Newton method is carried out. Finally, in
Section 4 an exhaustive numerical experimentation is presented. We compare our approach
with other spatially-dependent approaches and apply it to problems with large training sets.

2. THE BILEVEL OPTIMIZATION PROBLEM IN FUNCTION SPACE

Given a training set (u;r, fi), i = 1,...,N, of truth and noisy images, respectively,
the bilevel optimization problem under consideration reads as follows: Find a minimizer
(uf, ..., uk, \*) € [HH Q)Y x HY(Q) of the problem

N
2.1 i J(ut, ..., un, A) i= s — 2 + B2
(2.12) (w1 iy N LH (N x H1 () (1, ums2) ;”u tallzz + B1Alln o

subject to:
(2.1b) (ei(ui, A),v) -1 3 = 1(Dui, Dv) 5 + (hy(Du;), Dv)

+ /)\gﬁ/(ui,fi)vdx =0 forallve H&(Q), i=1,..., N,
Q
(2.1c) A>0 a.e. inQ,

where N is the size of the training set of images, 0 < u < 1, €; : H[%(Q) X Hl(Q) N H_I(Q),
fori=1,...,N and
d(ui, fi) = lui — fill32, i=1,...,N.

In order to simplify the presentation, we focus hereafter on the case N = 1. The results are,
however, still valid for larger training sets, as will be commented in Section 4.
The Huber C?-regularizing function h. is given by:

E if ylz[ =20

2z 271
|z

+ 050 = 5 Ol =) (2l ~ )
(22)  hy(n=4 AL 22

+ 2kl - 0ol - )7}

Gz else,

if a<~vlz] <b




OPTIMAL SPATIALLY-DEPENDENT REGULARIZATION 3

where a = 1 — % and b =1+ % This function locally regularizes the subgradient of the
TV-norm. The next result involves some properties of h,, which will be used along the
paper.

Lemma 2.1. There exist constants L., C, M, > 0 only dependent in vy such that
a) Forall z,2,¢6,7 € RN xRV (N € N¥),

(2.3) |R(2,2,&7)| == [hY(2)[€, 7] = R5(2)[&, 7| < Lylz — 2l[¢]I].
b) For all u,w € L?(Q) = L*(Q) x L*(Q) we have h’,(u)[w] € L*(Q) and
(1P (u) = B (@)]w, v) 12 < Cyllu— dllezllwlizllvlLe, Vi, v € LA(€Q).
¢) For all u € L%(Q) we have hl(u) € L2(Q) = (L"O(Q))2X2. Moreover,
185 (w) — R (@) e (o) < Myllu — |z,
Proof. The proof is included in the Appendix. O

From [7] we know that for each fixed v > 0, there exists an optimal solution for problem
. Denoting by G : HY(Q) — H}(2) the solution operator G(\) = u, where u is solution
of equation ([2.1b) corresponding to A € H'(£2), it has been shown in |7] that the operator
is Gateaux differentiable. In the next theorem we improve that result and prove that the
solution operator is actually twice Fréchet differentiable under some (nonrestrictive) data
regularity assumptions.

Theorem 2.1. Let f € LP(Q), for somep > 2, and Vg :={v € H*(Q): v >0 a.e. Q}.
The solution operator G : Vog — HE(Q), G : A+ u()), where u()) is the solution to ,
is Fréchet differentiable and its derivative at X € Vg, in any direction &€ € HY (), is given by
zi =G'(\¢ € H&(Q), which corresponds to the unique solution of the linearized equation:

(24) w(Dz,Dv),, + (h (Du)*Dz, Dv),, + 2/ Azv + 2/ E(u— flv=0,Yv € H(Q).
Q Q

Furthermore, if f € L®(2) and u()\) € CYP(Q), for some B € (0,1), then G is twice Fréchet

differentiable and its second derivative is given by wg\&C) € HL(Q) solution of

(2.5) M(DWE\&O;DU) + (hQ(DU)Dwgé’O,Dv) + 2/ /\wf\g’ovda:
Q

+ (hi;(Du)*[Dzi,Dzﬁ], Dv) + 2/ sz\vdx + 2/ £z§\vdaz =0, Yuve HI(Q).
Q Q

Proof. For arbitrary but fixed A, § € V,q, we denote by u and u¢ the corresponding solutions
to (2.1b)) with A and A+ &, respectively. By monotonicity techniques (see |7]), we obtain the

existence and uniqueness of a solution z§\ € H}(Q) to 1) and we also have that

(2.6) e — ull = OCEl ), 12501z = OEN o).
By taking the difference between ([2.1bf), with A and A + £, and (2.4]) we get that
(D (ug —u — zf\), Dv) ,, + (hy(Dug) — ho(Du) — h'w(Du)Dzi, Do),

+2/ Aug —u — zi)v+2/ E(ug —u)v =0, Yove H)(Q).
Q 0
Introducing 7 := ue —u — zi, we can write the last equation as follows

,u(Dn, DU)L2 + (hfy(Du)Dn,Dv)LQ +2 /Q ANy = =2 /Q §(ug —u)v

— (hy(Dug) = hy(Du) — bl (Du)D(u¢ — u), Dv) Vo € Hy(Q).

L2
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Taking v = 1 and using the monotonicity of hfy(Du) and A > 0 a.e. 2, one gets, for some
constant Cs > 0, that

Hanqé < (hw(Duﬁ) - hw(Du) - hfy(Du)D(ui - U)an)Lz

+ Csl[€ll anllue = wll g 101l g -

Due to the twice-differentiability of h., we obtain

(2.7) Ml < Ca (llue =l + €l llue = ully )

for all p > 2 and some constant Cy > 0. Thanks to |15, Thm. 1], there is some ¢ > 2 such
that

l[ug — ullwroe = OI€][g1)-
From the latter and estimates (2.6), it then follows that ||n|| = O(ll§ 1%,1). The last rela-
tion ensures the Fréchet differentiability of G and that zi =G'(\E.

Concerning the second derivative, for £,( € H'(Q) and X\ € V,q, let zi = G'(M\)¢ and

zf\ = G'(M\)( be the corresponding linearized solutions. We denote by wf\é’O the solution of

the following equation:

(2.8) p(Dw, Dv) + (k. (Du)Dw, Dv) + 2/9)\1011

+ (hf;(Du)*[Dzi, ng\]7 Dv) + 2/ (zf\vda: + 2/ fzgv =0,Yv e H&(Q)
Q Q

;&,C)7 for every given £, € V and A € V,q, follows from the

Existence and uniqueness of w
Lax-Milgram theorem.

Let ¢ € H'(Q) be such that A\¢ := A + ( € Vjq, and let zi( = G'(A\¢)§ and u¢ be the

solution to ([2.1b) corresponding to A¢. Taking the difference between 1} for zf\ and zﬁ(,
one gets

(2.9) ,u(D(,ziC - zi),Dv) + (hfy(Du)D(Zig - zi),Dv) + 2/9)\(2/5\C - zf\)v
+ ([, (Du¢) — h;(Du)]Dzﬁc, Dv) + Z/QCziv + 2/95(u< —u)v =0,Yv € H}(Q).
Testing 1} with v = zf\g - zf\, we have

(2.10) 125, - zﬁyﬁq& < 05{ ’([hfy(Dug) — h(Dw)] D25, D(=5, — zf\)))

b

] [ o6 - 9|+ | [ etuc— e, - 5
where C5 > 0 is a constant. From Lemma [2.7] the last relation yields
125, = 280y < Co ([lu = w125 g + ISV 25y + 1 €llvllug = wl )

where Cg > 0. Considering (2.6, the following estimate holds for some constant C7 > 0

(2.11) 125, = Al < ColICH e €]l
Moreover, thanks to elliptic regularity theory, it follows by a bootstrapping argument, that
(2.12) 125, — 2w < CollCllan €]

for any p > 0.
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By setting 7 = 25— 25— w9 and subtracting ([2.8]) from (2.9), we get that
Xe TAX T Wy

u(D7, Dv) + (h! (Du) D7, Dv) + 2 / ATV =
Q

— ([M.(Du¢) — hi,(Du)]D(zi( — zf\), Dv) —2 /Q C(ziC — zi)v — 2/§2§(u< —u— zﬁ)v
_ (h;(Duc)Dzﬁ — B,(Du) D=5, — h!(Du)*[ D=5, DzﬁLDv), Yo € HY Q).

Testing with v = 7 and using the ellipticity of the terms on the left hand side, we obtain
that

_|_

213) Il < G | 14Du0) ~ 1, (D] DG, - =) B

e =)

W, (Du¢) D25 — bl (Du)D2§ — I (Du)*[ D=5, ng]‘

et ==+

L2 }’
for some constant Cg > 0.
For the first term on the left hand side, thanks to the Lipschitz continuity of h’y and

estimate (2.12]), we get that

3 3 3 3
| [0, (Dug) = my (D] DS, = )|, < I (Due) = Wy (Dw)|, |25, — 5
3 3
< L|lu¢ — ullyip W ZAHWL‘I

2
< ColI¢l N -
Since the solution operator has been proved to be Fréchet differentiable, it follows that
lug = — 2§l = O(ICIIZ:) and, thus,

e —u=25)] , < CroléllanlicIZ,
where C1g > 0. From (2.11) it also follows that
¢S, == < culicBlielm,

for some constant Cq; > 0.

For the last term on the right hand side of (2.13)), we obtain that

| (,(Dug) — v, (Dw) — w(DuyD:5) DS | <|

Wy (Duy D(ug —u— )| 1D les
+ || (Du¢) — 1. (Du) — By(Du)*D(u¢ — u)]
where 1/r 4+ 1/s = 1. Taking into account estimates (2.6) and (2.7)) we get that

| (1, (Dug) = 1t (Du) = (Du)* D=5) 5|, < Cllélm (olluc = wlhwr) + o(licl )

with p > r.

o 1Dz

Now taking the estimates of ‘fﬂ C(zic - zf\)T‘, ‘fﬂg(u(; —u— zf\)T‘ and the results in
Lemma into account 1) noting that [|n¢|| g1 < ms||¢|131, we have

2
171y < CrallClz 1€l
where C12 > 0 is a constant. The last relation ensures the twice differentiability of G and

we also have that wE\S,C) =G"(N)[¢, ¢ O

Remark 2.1. The Hélder continuity assumption on the gradient of u(\) is not restrictive.
In fact, it may be proved under some domain and data regularity (see, e.g., [0, Thm. 2.2]).

Based on the differentiability properties of the solution operator, a first order optimality
system characterizing the optimal weight function is derived next.
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Theorem 2.2. Let (u,)\) € H}(Q) x V,q be an optimal solution for (2.1)). Then there eist
p € H}(Q) and ¥ € L*(Q) such that the following optimality system holds (in weak sense):

(2.14a) —puAu —Div ¢+ 2\ (u— f) =0 in €,
(2.14b) u=20 on T,
(2.14c¢) q = hy(Du) a.e. in €,
(2.144d) —pAp+Div z+2M\p+u—u) =0 in Q,
(2.14e) p=0 on T,
(2.14f) z = h.(Du)"Dp a.e. in €,
(2.14g) Y= —BAN+ BA+ (u— fp in Q.
(2.14h) g;\i =0 on T,
(2.14i) A>0, 9>0, 9A=0 a.e. in .

Proof. Since the solution operator is differentiable, it follows, using the reduced cost func-
tional

(2.15) T = )~ ul 22 + TN

that

(216) T’ (€ =A) =2(u(N) —ul, ' W)€ =2) + BOE =N 20, V€€ Vaa,
Introducing p € H&(Q) as the unique weak solution of the adjoint equations —
and replacing in , we get that

(217) BOVE= N + [ plu= 1)(E=X) 2 0.¥E € Vaa

Inequality (2.17)) corresponds to an obstacle type problem with unilateral bounds. Thanks
to regularity results for obstacle problems (see |28, Thm.5.2, p.294|), it follows that A €
H2(Q) (if f € LP(Q) for some p > 2) and, therefore, we may define

9= —BAXN+ LA+ (u— f)p € L*(Q).

Integrating by parts in (2.17) we then obtain that (19, &— )\) ;2 = 0. From the latter and the
sign of A, we obtain that

(2.18) A>0, 9>0, 9A=0 ae Q.
O
The complementarity condition can also be reformulated as the following equation:
¥ = max(0,Y — a), for any a > 0,
where max is interpreted in an almost everywhere sense. By choosing o = 8 and replacing
in one gets
(2.19) — BAXN+ BA+ (u — f)p — max(0, —BAX + (u — f)p) = 0.
Altogether, we obtain the following system for y = (u, q, p, 2z, \)
—pAu — Div ¢+ 2\ (u — f)

ulp
hy(Du) — q ;
(2.20) F(y) = ~HAp — Divz ;:Ap +2u—ul) —0,

h.,(Du)*Dp — z
—BAN+ BN+ (u — f)p — max (0, —BAN+ (u — f)p)
OzMr =0
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where F' : V. — W with V = H}(Q) x L*(Q) x H(Q) x L?(2) x HY(Q) and W :=
H=1(Q) x HY2(I') x L*(Q) x H~Y(Q) x HY2(T') x L*(Q) x HY(Q) x H~/2(T).

2.1. Second order sufficient optimality condition. To state a second order condition,
let us start by computing the second derivatives of J(u, A) and the state equation operator
e(u, \) defined in (2.10). For (u, \) € () x HY(Q) and for all w,n € HE(Q),l € HY(Q), we
have:

(2218)  Juu(u, Nw]? = 2[w] e, Ta(u, MIP = 28130
(2.21b)  Jyx(u, A) =0, (U, A) =0
(2.21c)  (euwr(u, A)[w,l],v)HA’H& = Q/Qu)lv, exx(u,A\) =0

(2.21d)  (ewu(u, A)[u;,n],v)H_lH6 = (h”(Du)[Dw,Dn],Dv) R

for all v € H} ().
Note that for any fixed A € H}(Q2) and u € H}(2) we get

(2.22) (eu(u, Aw, U)H_l = ,u(Dw, DU)L2 + (hfy(Du)Dw, DU)L2 + 2/ Awvdz,
’ Q

for all v € H}(Q). Now let a :=1 — % and b:=1+ %, and let us introduce the sets

AV (u) :={ € Q:~|Du(z)| > b}; SV(u) :={z € Q:a < 7y|Du(z)| < b};

IV (u) == {z € Q: v|Du(z)| < b}
and ty(u) := 3 (y|Du| — a) = 3(v|Du| -1+ %), to(u) = y|Du|—1— % For all z € H(Q),
we get the following expressions for the derivatives of h,:

Dz  (Du,Dz)
— D
[Du] ~  [Duf? “}

(2.23)

W, (Du)*Dz = Xm(u){

gl (Du, Dz)
(2.24) + ng(u){QDz + 72 (7|Du| — 1) [2w2t1(u)t2(u) - 1] WDU
n 2y =1 ~ti(w)tz(u) L V2 (u)t3(u)] [ Dz _ (Du, D2>Du
4y 2 2 | Dul| | Dul?
+ xz(w) (D)
and

#xsr] |30t (9*1Du (1D - 1) - ) +1)

2.25 1 1
(2.25) — <73|Du\2 — | Dul + 3~ 4>]<I>(Du, Dp)Dz
Y

+ 6%t (u)to(u) 22 PP DUDY) Dz},

| Dul?
where the operator

3(Du, Dp)(DuDu?)  (DpDu?) (DuDp®) (Du, Dp)

& (Du, Dp) := — — —
(D, Dp) Duff DuF  Duf DuP

We obtain the following property of the second derivative ey, (u, A).

Lemma 2.2. Let p* € H}(Q) be a solution to (2.14d))-(2.14f), and assume that the hypothe-
ses of Theorem hold. Then there exist constants L], L3 > 0 only depend on =y, such that
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for any w,n € H}(Q)
(2.26) [0 a1 1) < L3I0 gy o0l Il
@27) |, [ewn . ) — cun (s N[0, 7]) gy | < L3t — il g 10" g ol g Il
for every u, 4 € HY(Q) .
Proof. From the regularity conditions, we first have for every w,n € H}(Q)

185 (Dw)[Dw, D] 2 < K5 (Du)* Dw| s | Dyl - = O([lwl g2 1l gz ).
where 1/s 4 1/r = 1. Therefore h!/(Du)[Dw, Dn] € L*(Q). It then follows

From (2.26) and Lemma we get ([2.27)). O
We define the cone of critical directions by
=0 if J(x)#0
2.28 K\ )=<qle HY(Q):1 :
(228) (A% { ) (x){ZO if Hx)=0 and A (z)=0

Now let us state the second order optimality condition for problem ({2.1). The proof goes
along the lines of [21,22|. However, since in our case the control enters in a bilinear way and
the PDE has a quasilinear structure, the proof has to be modified accordingly.

Theorem 2.3. Let (u*, \*,p*) be a solution of the optimality system (2.14]) and suppose
that

(229 2fwli. + 280U + /Q ([ (Du")Dw] w, Dp*)dz + 4/lep*dx > pllUliz
for every pair (w,1) € HY(Q) x K(\*), (w,1) # (0,0) which satisfies the linearized equation:
(2.30) p(Dw,Dv) ,,+ (h (Du*)Dw, Dv),, +2/ I(u” —f)vdx+2/ N wvdr = 0,Yv € V.

Q Q
Then there exist 0 > 0 and 7 > 0 such that
(2.31) J(u* XY+ 7lIA = N[ < T (u, ),
for every feasible pair (u, \) such that u = G(\) and ||]N — X*|| g1 < 0.
Proof. Suppose that A* does not satisfy the growth condition (2.31)). Then there exists a
feasible sequence {\,}, C H'(2) such that

. 1
1

(2.33) T X + A= N > T M) = Lk, A, p%) -k,

where u;, = G(\g) and L(u, A, p) := {e(u, \),p) + J(u, ). By setting pr. = || A\x — A*|| 1 and
Cr = p%@()\k — \*) it follows that ||(x||zn = 1 and therefore we may extract a subsequence,

denoted the same, which converges to ¢ weakly in H'(Q).
Step 1. By the mean value theorem we have

E(ukv )‘k7p*) + £u(Vk, Akap*)(U* - uk) - E(U*u Akup*)
= L(u", A", p") + ppla(u”, &k, p*)Ck
where v, & are points between u* and wuy, A* and A, respectively. From (2.33) and
J(u*, \*) = L(u*, \*, p*) it follows that

(2.34) La(u”, &y p*)C < EH/\k = A+ p*kﬁu(lfk,)\mp )(u* — ug).
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By using again the mean value theorem for the last term on the first variable, we obtain

Lo(viey Ay ) (0 — ug) =Ju (i) (w” — k) + (p7, €u(Vie, Ap) (0" — up)) 3 g1
=Ju(e) (W — uk) + (P7, eu(u®, Ap) (W™ — ug)) g g
+ (07, ewn (W, M) (v — w) (W — ug)) g g

+ <p*> (euu(nk’7 )\k’) - euu(U*a )\k))(l/k - U*)(U* - uk)>H01’H—1a

where 1 = u* +t(vg — u*), for some ¢ € [0,1]. From (2.22)) and the optimality system ({2.14))
it follows that

(P, eu(u®, Ap) (W' —up)) g2 g1
0 e A0 = g 2 [ O = X" = )y’
=— Ju(u")(u* —ug) + 2/(/\k — N (u* —ug)p*.
Q

Hence, from (2.26)) and (2.27) we get

| Lo Wiy Ay ) (" — )| <[ u(vie) = Ju(w") -1 [l = gl
+ 20X = Al pallw” — ull s llp|l s

+ LiIp" g v — [ g ™ — g

Ll — w2 " g oe® — el -

Due to the quadratic cost and the convergence ¢, — (, & — A* in H'(Q) and up — v* in
H} (), from (2.34) it follows that

Lo, N, p)C = Tim L (u”, &, p)C < 0.
On the other hand, since A\g(x) > 0 a.e in €, it follows that
(2.35) La(u, X p")Ce = pela(u™, A", p*) (A — A7) > 0.
Since ( — ¢ one gets Ly (u*, \*,p*)( = le%OEA(u*,A*,p*)Ck > 0.
Thus, altogether we obtain that £y (u*, \*, p*)¢ = 0.
Step 2. Now we show that ¢ € (A\*). The set
{ve HYQ):v(x) >0 if d(z)=0 and N\ (z)= 0}

is convex and closed, hence it is weakly sequentially closed. Since A is feasible, then for
each k, (i belongs to this set and, consequently, ¢ also does. From (2.14i)) it follows that
Y(z)((x) > 0 a.e in Q, which implies

0= Ly, N p ) =B\ C)pu + [ (= flp*¢= [ 9= [ [9¢].
Q Q

Q
It follows that ((z) = 0 if J(x) # 0 and therefore ¢ € K(\*).

Step 3 (C =0). Using a Taylor expansion of the Lagrangian £ at (u*, \*, p*) we have

2
(2 36) ﬁ(”k: )‘kap*) :E(U*v A*7p*> + Pkﬁ)\<u*7 A*ap*)gk + %‘C)\)\(U*a /\*717*)(13

* \% % * 1 % % *
+pk£u)\(u 7)\ D )(uk’_u )(k_‘_ §[fuu(yka)‘ D )(uk’_u )21
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where v, is an intermediate point between w; and uw*. Therefore, thanks to the bilinear
control structure,

2
Pl (u*, X, p*) (G + %ﬁA/\(U*a N P)CE + preLun(u®, N p) (ug, — u*)Cp

U — U

p2 ®\ 2
+ T Lo (U, N, p* < )
5 Luu( p) o
:E(Uk,)\k,p*)_ﬁ(u*,)\*,p*)

2 o\ 2
+ & |:[ruu(u)k’)\*7p*) - Euu(yka)‘*ap*):| <Uk “ ) .
2 Pk

Moreover, from ([2.33) it follows that

(2.37)

2
(2.38) Ll A7) = L, M, p7) < E.
. s — IGAR) =GN g1
From the differentiability of G, we have that || o | = e is bounded. Hence,
H

from A\ — A*, ||Ckl|gr = 1 and by ([2.27]) we obtain

%\ 2
* oy k% * % U — U
Hﬁuu(u A5 DY) = Lyu(vi, A, p )]( kpk > ‘

(2.39)

2
up — u*

Pk

— 0.
Hé k—o0

< Lo llp*ll g 1™ = wall sy

From ([2.37) it follows that

lim inf Ly (u*, \*, p*)¢Z + lim infﬁuu(u*,)\*,p*)<uk —u >
k—00 k—o00 Pk

1
+ 2 lim inf — Ly (u*, X, p*) (up — u™) (g
k—o0 Pk

1 1
<2 lim sup — [L’(uk, Ay P7) — L(u”, )\*,p*)] — 2 lim inf —Ly(u™, \*, ") (k.
k—o00 Pr. k—o0 Pk

Since Ly (u*, \*,p*)(Z = 2ﬁ||§k||%{1 is weakly lower semi-continuous and from (2.35)), (2.38),

the last relation implies

Lon(u*, N, p*)¢2 + lim infﬁw(u*,/\*,p*)<uk_u )
k—o0 Pk

(2.40) /
U — U

1
+ 2 lim infﬁu,\(u*,)\*,p*)< )Ck <2lim — =0.
k—o0 k—ook
Let us denote by 9, the solution of (2.30)) associated with ;. Since ¢y — ¢ in H 1(Q) and
ICk|| g1 = 1 one gets that ¢, — ¢ in LP(Q), for all p € [1,00). Hence, from (2.30) and the
continuous invertibility of e, (u*, \*), we have ¥¢, — .

Besides,
2 2
Loy (U™, A5, = Loy (U™, \", _— - 9
( p)< Pk > ( p)< Ak — A &
* o\ k G )‘k -G\ %\ k ok
+ 2L (u", X", p )((HAZ—/\(H) —ﬁcwﬂck) + Lo (u", N, p") (9¢,)
and

up — u*

)Ck =La(u", A\, p )<H/\k—)\*H - 79@)@

‘CUA(U*7 A*ap*) <
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Note that ¢, also corresponds to the derivative of the control-to-state mapping G at A\* in

direction (i. From the differentiability of G, it follows that w ey, k—) 0. Due
— 00

to the continuity of the bilinear form L, (u*, \*, p*), since ¥¢, — ¢ and from (2.14gH2.14i),
we get

1
Lan(u" X, p)6 4 2L (w0, N, p) (960) + Lo (™, X, p*)92 < 2 lim = = 0.

Since ¢ € K(A*), from (2.29)) it then follows that ({,7¢) = 0.

Step 4: Finally, from 9, — J¢ =0, (2.29), (2.35)), (2.38) we have

1
lim sup p||Ck |31 < lim sup Ly (u*, A*, p*)¢ < 2 lim — = 0.
k—o0 k—ro0 k—ook
Hence, ¢, — 0 in H'(Q), which is in contradiction to ||kl = 1. O

3. DISCRETIZATION AND NUMERICAL TREATMENT

In this section we present a numerical strategy for the solution of problem . We
start by explaining how the domain is discretized using finite differences and introduce the
resulting discrete operators. Due to the size of the problem, an overlapping Schwarz domain
decomposition strategy is considered, where the transmission conditions between subdo-
mains are determined in an optimized way. The resulting subdomain finite-dimensional
nonlinear systems are then solved by using a semismooth Newton method, for which lo-
cal superlinear convergence is proved. A further modification of the semismooth Newton
algorithm is introduced in order to get a global convergent behaviour.

3.1. Discretization schemes. For the image domain, we use a finite differences scheme on
a uniform mesh and consider the problem on the domain €2 := [0, (w—1)h]x[0, (I—1)A],
where h denotes the mesh step size, and w,! € N* depend on the resolution of the input data.
In practice, w and [ are width and length of the input images f, ul in pixels. In what follows,
the notation u, g, p, Z, A is used for the discretized variables that approximate u, ¢, p, z, A and
Fy, Divy, Ay are used for the discrete approximations of F, Div, A, respectively.

In order to approximate the state and adjoint variables, as well as their derivatives, we
consider a modified finite differences scheme (see |23|). We define the following grid domains:

Op = {zij = (i —Dh, (G- DA)i=1,...,w;j =1,...,1}
Qp = {zij == (1 —05)h,(j—Dh)i=1,...,w;5 =1,...,1};
QF ={zij = (i — Dh,(j —05)h)i=1,...,w;5 =1,...,1}.

and the corresponding spaces of grid functions:

Un = {uij = w(xij)|zij € Qs uo =up; =0; 1<i<w, 1<j5<1},
Ah:{)‘w: Az; )|$ZJEQh§ 1<i<w, 1<j<I}

Dl = {uy; = u(zy)|wij € Qh; wio =upj =0; 1<i<w, 1<j<li}
Di = {uij == u(wij)|zij € Qm up =up; =0; 1<i<w, 1<j5<I1}

Therefore, u,p € Uy, A€ Ay and 4,z € DL x D%. We define the operator D}, as follows:
Dy Ay — Dy x D2y (Dyv)ij = ((Dhy, ©)igs (Dhyy i)

where Dj,, and Dp,, are computed by forward differences of the "inner points"

Vit — Vs st — Vi . ,
(Dpy )i o= ——L—"L (thv)i,j;:%; 1<i<w—-1,1<j<l—1.
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The discrete Laplacian Ay : A, — Ap is computed by using a classical five point stencil.

ou Op A .
o = om = omi 0, (1 =1,2) we get

Qo = U2j;  Uwglj = Uw—1,; (1 <FG<1)s Ui =Uio;  Uiggr = Uig—1

For the Neumann boundary conditions

IN
IN

(1<i<w)
Poj = P25 Pwtly =Dw-1; (L <73<0; DPi2=pi0; Pigt1=pii—1 (1 <i<w)
Noj =g Awtig =M1y (1<3<D; N2 =No; Nigpr = g1 (1<i<w).
The discrete divergence operator Divy, : DI x D2 — Uy, is computed by using backward
differences ¢ = (¢',§?) € DL x D?

~1 ~1 ~2 ~2
%, — %14 n Gy — 4ij—1

Divp§)i; =
(Divag)i, ; ;
B ( (--0.5)h, jh) lrik,jlﬂ
e B : Points for u, p, A\, Ay,
(1, G-0.5) ,
O DhQ7 th7
e (O : Points for Dpu, Dpp,
Dy, q, 2.
—n '
(D)1 G-

FIGURE 3.1. Mesh structure of the discretization scheme

Accordingly, we define the approximation operator Fj, : H, — H}, where H, = U, X
(DL x D%) x Uy x (DL x D2) x Ay, and H; = U, x (D} x D2) x U, x (D} x D2) x Uy, and
fory = (u,q,p,2,\) € Hp, we have the equation

— A — Divy, G+ 2X.(0 — f)
hﬂ/(Dhﬂ) - q
(3.1) Fu(y) = —uApp — Divy, 2+ 2X.5 + 2(a — ul) =0.
h. (Dpa)* Dpp — 2
—BARA + BA+ (@ — f).p — max (0, —BARA + (T — f).p)

Above, we used the notation u.v to present the grid function (uv);; = w;;jv;; for all u,v € Ay,
or u,v € DF (k = 1,2). Hereafter, the notations (-,-) and || - || stand for the Euclidian
product and norm in R, respectively. Besides, for ¢ = (¢',¢?),z = (2%, 2%) € D! x D2, we
denote (Q7 Z)D}LXDg = <q15 Zl> + <q27 22>‘

3.2. Schwarz domain decomposition methods. The nonlinear system , arising
from the discretization of ([2.20)), is of large scale nature, involving the solution of three
coupled PDEs per each training pair of images. Even for the case of a single training pair,
this task cannot be performed on a desktop computer. In the case of larger training sets,
the problem becomes much harder, not to mention the increasingly high resolution of the
images at hand.

To tackle this problem, we consider the application of Schwarz domain decomposition
methods for solving the resulting optimality system. Since our aim is to set up a parallel
method based on domain decomposition, we focus on additive Schwarz methods. Once
the domain is decomposed, the nonlinear optimality system is solved in each subdomain.
Such an approach was considered, for instance, in [9] for the pure total variation denoising
problem.

It is well-known that the convergence rate of the Schwarz method is dependent on the
size of the overlapping area. In order to improve the convergence rate, a modified version
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of the method was proposed in [13,24]. To illustrate the main idea, consider the following
coupled linear system with an optimality system type structure:

—Au+nu=f+60p in Q u=0 on OQ;
—Ap+np=—(u—1ug) in Q p=0 on 09,
where 6,7 > 0. The so-called optimized Schwarz method (with two subdomains) is as
follows: For k > 0; ¢,5 € {1,2}, ¢ %j
—Au k+1 + nu =f+ upl’“’l in
k+1 k+1
ult ‘8(2—0 (a,+an) s }Fi:(ai—i—@ﬁ)uﬂri;
Akarl +77pk+1 (uerl “ug) in Qi
k+1 k+1 _ k
p; ‘89 =0; (ai + aﬁ)pi ‘ri = (O‘i + 8ﬁ)pj‘ri’

where the transmission parameters ai,ag are approximated as follows (by zero order ap-
proximations)

ap = /1, = —/1.

In order to obtain the formulas for the transmission parameters of the optimized Schwarz
method, we consider the equations for u and p in the optimality system (in strong form) as
a coupled system

—pAu — Div[hy(Du)] 42X (u — f) =0,
—puAp — Div[h. (Du)*Dp] + 2Ap + 2(u — ul) = 0.

By skipping the regularization terms, we get again the linear coupled system as in [24] with
u = 1. In addition, we consider the equation

—BAX+ A+ (u— f)p=0

for the functional parameter A. We use the common forms of transmission conditions on
I'y,T's in optimized Schwarz method as follows

(£+S( k,,\k))vlfﬂ(_’xz) (ﬁ +S(“k’?’“‘ )) k(,z2) on T

on on
(3.2) 9 9
k: k k k
(78_’ +S(u A ))v§+1(-,x2) = (78_’ —I—S(“ A ))vf(-,xg) on I'g,

where the transmission parameters are chosen in a similar way as for the coupled (linear)
system (see [24]):

SRR _ bbb _ 2L sk gkl _ glutatal __ [2A8)
ul p1 M 7 u2 D2 /J/ ?
( k’ k7/\k) o ( k} k)\k) B
Syt =1 SEP ) = 1

3.3. Semismooth Newton method. The optimality system has a nonlinear non-
smooth structure. Because of this, a Newton method cannot be directly applied. However,
the nonsmooth functions involved, in particular the max operator, have additional proper-
ties, which allow to define a generalized Newton step for the solution of the system.

Definition 3.1. Let X, Z be Banach spaces and D C X be an open set. The mapping
F: D — Z is called Newton differentiable on an open set U C D if there exists a mapping
G:U — L(X,Z) such that
lim |F(z+h)— F(zx) — G(z + h)h| 2
h—0 17| x

=0, heX

for every x € U. G 1is called generalized derivative of F.

We also refer to |16,/17] for a chain rule for Newton differentiable functions.
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Lemma 3.1. Let F': X — Z be a Newton differentiable operator with generalized derivative
G; z* be a solution of equation F(x) =0 and U C X be an open neighborhood containing
x*. If for everyy € U, H[G(y)]iluﬁ(X,Z) is bounded, then the Newton iterations

Tpp1 = o) — G (2p) F ()
converge superlinearly to x*, provided that ||xg — x*||x is sufficiently small.

In particular, it has been proved (see, e.g., |17]) that the mapping max(0,-) : R” — R is
Newton differentiable with generalized derivative G,, : R™ — E(R”, ]R”) given by

1 if y; >0,
Gm i =
(Gn(y) {O A

The operator Fy, in (3.1)) is therefore Newton differentiable and its generalized derivative
Gr : Hy, — L(Hp, H}) is given by

(33) Gp,(y)dy =

(2AI — puAp)oy — Divy,64 + 2(u— f)ox

h’v(Dhu)thu — 9y
2(5 + (2)\1 /J,Ah)(5 — Dth5Z + 2])5)\
(h/ (Dhu) th (5 -+ h (Dhu)Dhép — 0,
POy + (u — f)op + B(I— Ap)dx — m(u — )p = BARN) (py + (u — [)0, — BARS)

where dy = (04, dg, 0p, 05, 05) and I stands for the identify. The semi-smooth Newton step is
then given by

(3.4) Gr, (YE)dy = —Fh(Yk):  Yi+1 = Yk + dy,
where F' and G, are defined in (3.1) and (3.3)), respectively.

For the convergence analysis, we also assume that there exists an optimal solution (u*, \*) €
Up x Ay, with A* > 0 on €. The second order condition in Theorem ensures that a
solution of first order system is also solution of the optimization problem. However, to con-
sider the convergence of the semi-smooth Newton method, we need the following stronger
assumption: There exists p > 0 such that

(3.5)  2lwll* + B + |Dall*) + (A" (Dyu™)[Dpw, Dyw], Dpp*) py o
T 4wl g > (U2 + |1DRLR),
for every pair (w,l) € Uy x Ay, that satisfies
—pApw — Divy, (B (Dpu*) Dpw) + 2(u* — f) 1+ 2X* w = 0.
Instead of K in , we consider the discrete cone
K={lij=1Uzij) €An: 1;>0; 1;#0 Vi € Q).
From the monotonicity of h,(z) it follows that h(z) is positive semidefinite. Hence, the

mapping W : A, = Ay, defined by W (w) = —Divy, (b, (Dpu*)Dyw) (u € Uy) is also positive
semidefinite. Now we consider the mapping e, (u, \) € L(Up, Uy) defined by

eu(u, N)w = —pApw — Divy, (h’ (Dhu)th) +2\w Yw € Uy,

We have (e, (u, \)w, w) > ((2M — pAp)w, w) Yw € Uy. Besides, for all u € U, and X € K,
the operator (2AI — uAy,) : Up, — Uy, is positive definite. It follows that e, (u, \) is positive
definite and hence invertible. Moreover, from the last inequality we see that for fixed u € Uy,
and A\ € K, there exists C' = C(\) > 0 (only dependent on \) such that for every & € Uy,
the equation
eu(u, \)w = —pApw — Divy, (hfy(Dhu)th) +2 A w=¢

has a unique solution w € U}, which satisfies ||w||p, < C/¢||u, -

In order to consider the convergence of the method, we need C' independent of A. We use
an additional assumption.
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Assumption 3.1. There exists a neighbourhood V (X*) of the optimal parameter \* and a
constant C > 0 (independent of w and \) such that, for all (u, \) € Up x V(X*) and for any
¢ € Uy, there exists unique solution w € Uy, of ey (u, \)w =& and |Jw|ly < C£]].

If a pair (w,l) € Uy, x Ay, satisfies the equation
eu(u, Nw + ex(u, \)l = —uApw — Divy, (b, (Dpu) Dpw) + 2Xw + 2(u — f)1 =0,
then ||w] < Ci(u, A)||l||, where Ci(u,\) > 0 is dependent on (u, ). If Assumption

holds and we only consider » in a bounded neighborhood of u*, the last estimate yields
|lw]| < C1]|l|| for some C7 > 0 and for all w € Uy, 1 € Ay, satisty e, (u, \)w + e)(u, A\)l = 0.

Lemma 3.2. Let Assumption hold and (u,\) € Vi(u*) x V(X*), where Vi (u*) is a
bounded neighborhood of u*, V(\*) is the neighborhood mentioned in Assumption . Then
there exists a constant > 0 such that for all solution (w,l) € Up x Ap, of the equation
eu(u, \)w + ex(u, \)l = 0, we have the estimate ||wl|| < 0||I]].

It is easy to see that in case we consider A € R and A* > 0 (the case \* = 0 is trivial),
there always exist a bounded neighborhood Vj(u*) of u* and a constant r > 0 such that all
properties in Assumption and Lemma hold for all (u,A) € Vi(u*) x (A* —r,A\* +7)
without any additional assumption.

Theorem 3.1. Let Assumption and condition hold. Then the semismooth New-
ton method applied to , with generalized derwative G, defined by , converges lo-
cally superlinearly to a solution y* = (u*, q(u*), p(u*, X*), z(u*, \*), \*, u(X\*)), provided that
llyo — y*| is sufficiently small.

Proof. At step k > 0, we denote Ay := {x;; € Qp : (u— f).p— BARA > 0}, I), := Qp \ A; F}ZL
are components of right-hand side, i = 1,..,5. The 5 equation of the system can be
expressed as

X1 Ap-Ou + (u = )0, + B = Ap)or} = x1, F-
By a short computation, we can write (3.4) in equivalent form as follows

{XAkﬁfsA = xa,F}

(3.6a) {@Ar — pAn) — Divp[h (Dyrug) Dp)}ou + 2(ux — f).0x = fi
(3.6b) {21 — Divy, [(k}, (Dnur)*Dupr) | }ou+
+{ 2\ — pAy) — Divy [kl (Dhug) Dy] }6p 4 2p1.6x = 2f>
(3.6¢) X1 {Pk-Ou + (ug — £).0p + BI— Ap)ox} = x1,80— Ap)f3
(3.6d) XA,0\ = XA, fa
where fi = F} — Div, s fo = 2(F — Div, Fb); f3 = 8711 — Ay)71Fp and fy = B71Ep.

For a fixed grld step size h > 0, we easily verify that there exist some constants my, ms, ms,
ma, ms > 0 such that || f1]] < mlHFf}H + mal|F¢llprwpz, 1f2ll < mallF2 I+ mall 1« p2
and [|fs[| < ms|Fyll.

We use the techniques as in |21 22] to show that there exists a neighborhood V' (u*, \*, p*)

such that with any )\ p V(u*, \*, p*) the system ({3.4) is solvable for every right-hand

side Fj. ! We write l in form

[ eu(ug, )\k)5u + e/\(uk7 AR)Ox — f1) _ )
E(éu,é,\)— < XA((s)\_f4) —O, where E.UhXAh%UhXAHAk.

We have ker(E') = {(v,1) € Up, x Ap, : xav = 05 e (ug, A)v + ex(ug, A)l = 0}.
To show the existence and uniqueness of a solution to (3.6)), let us introduce the following
auxiliary problem

min J4(8u, 03) = |8 = foll* + Bllxz, (0x — f3)lI* + Blixr, [Dn(6x — f3)]1?

1
(3.7) + §<€uu[5u]27pk> + <eu/\[5m 5)\]>pk>
subject to E(0y,0)) =0.
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We consider the Lagrangian
LA(Bu, 63,0 ) = Ta(Gus 62) + (¥, xa(0x = f2))] 4,

+ (0p, eultr, Ak )0u + ex(ug, Ax)ox — f1)-

Now it is not difficult to show that (3.6]) is the optimality condition for problem ({3.7)).
The Hessian of J4 is determined by

T4 [0u, 63 = 2016ul® + 28 (1, 031> + X2 (PN 11 p2)
+ ([ (Dnk)” Dnduludus Dapr) 1 pa + 4(Pk-0u; 0x)-
For every (dy,0)) € ker(E’), we have x 4,0\ = 0. Hence
TR18u, 0317 > 2[16u]1* + 28(1I8xl1* + 1 DadAlIDr x p2)
+ ([h! (Dpur)* Dydulubu, thk)DaxDa + 4{pp.6u, 0)).

By Lemma[2.T] and Assumption [3.1] there is a neighborhood of the solution such that inside
it, e, (u, \)* is surjective, invertible and e, (u) is Lipschitz continuous. Hence, from
there exists a neighborhood V (u*, \*, p*) of the solution and a constant p > 0, such that for
all (u, A,p) € V(u*, \*, p*), the estimates

2o + 28117 + 1 Dullly e pe) + ([, (Diw)* Delv, Dap) py o + 400, )
> p(lUP + I Dall%y  p2)

holds for every (v,l) € U, x Ay, which satisfies e, (u, \)v + ex(u, A\)l = 0.
Now we assume (ug, Ag, p) € V(u*, \*,p*). By using the formula of J4[d,,d,]%, the last
inequality and Lemma [3.2] we find that there exists constant K, > 0 such that

(3.8)

(3.9)

K,
(3.10) T4[0u, 05> > @H
Therefore, (3.8)) is a linear quadratic optimization problem with convex objective function.
Besides, we also have that E’(u,\) is surjective for fixed (u,\) € V(u*, \*), hence there

exists a unique solution (dy,dy,dp, ), with ¢ € A‘ A, 1O the following optimality system,

(Ous NI, V(0 02) € ker(E').

which are stationary states of the Lagrangian £4

(e (ths Ak )8 + ex(ug, Ak)dx — fi =0
XA, (0x — f1) =0
(3.11) (2 + ewu(ur)pr)Ou + eur(Ur, \e)PEON + €u(ur, Ar)dp = 2f2
eur(Uks Ak )Dk-0u 4 2X1, BT — Ap)dx
Fex(ur, Ae)dp + X400 = 2x1, 8(I = Ap) fs.

Applying x 4, and X7z, to the last equation we get

X1 {Pkdu + (ug — f)-0p + B(I— Ap)or} = xr, 81— An)fs
Xag {Pr6u + (up — f).06p + 300} =0,
which implies the solvability of (3.6)). We write the system (3.11)) in equivalent form as

THBus05) + (B (6p, ) = 2(f2, x1, 8 — Ap) f3)"
E'(0u,05) = (f1,xaf4)-

From it follows that ||ey., (u)[w]*p|| < r|p||||w]|| for some r > 0 independent in v and for
every p, w € Up. Besides, since 0 < 8 < 1, we have that there exist r1, 79 > 0 independent in
(uk, pr, A\k) such that HJX((Su, 6>\)||Uthh < r[[|0a]l+(1+472)||6u]]]. Therefore, from the third
and the forth equations of (3.11]), since ey (u,\) is continuous invertible for (ug, px, i) €
V(u*,p*, \*), there exists r5,r¢, K3 > 0 such that

(3.12) 10 D)y, | = K3 ([1(0u; 1/ (1 + r4)0x) oy xa,, + 73]l follus, + 76l fslls,)
Ak
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for solution (4, dx, dp, 1)) of the optimality system for auxiliary problem.

With v € Vi (u*), A € V(A\*) which are mentioned in Lemma |3.2| and Assumption E'is
surjective. It follows that range((E’)*) is closed and therefore the following decomposition
is well-defined

(6, 6x) = (84, 0%) + (87, 6)  where (3}, 5) € ker(E'); (8, 0%) € range((E')").

From x 4,865 = x4, fa it follows [|0%|| < K| f4]| for some constant K > 0 which is indepen-
dent to A (since x4, is invertible on range((E’)*)). Besides, from (47, 0%) € range((E’)*) we
have e, 0, +exdy = 0, and hence from Lemma one obtains for some K7 > 0 independent
in A

(3.13) 1062 ) v <, < Kl fall-
Besides, since (6%, 65) € ker(E’) and from (3.9), we have
K,

sl 95,87 e, < (105851, (05, 65))
(" [Bus B3], (8, 63)) — (T"18%. 851, (85, 6%)) — 27" (6%, 88], (87 63)
=22 BT = A o) (8 30)) = (XA T B Dy |
(716 831, (8%, 83)) — 27”6k, 58], (5. 53)
=(2(f2r X1, B0 — D) fo), (8, 08)) + (2(fa xn, BT~ An) f3), (55, 5))
= (XA Gy, = (T80 051 51, 800) = 24185, 80,42 5)

From (3.12)) and (3.13)) it follows

(3.14)

4

K,
< KO #illfill?) + s 5]
NS ECSRIA) +

<(f17 XAf4)7 (617’ 1/})>U}L><Ah

Besides, by the properties of ey, in case (ug, pg, A\x) € V(u*, p*, A*) which are mentioned in
Lemma 2.1} we also have

127" [63, 03], (6, 8))| < K fall* + R

4(1 —|—7“4)
K.r
2(fo, x1, B = Ap) f3), (65, 05)) < ra| fol | + 7| f3]|* + mll(éﬁ, 5]§)||2Uhx/\h;

—(T" 164,08, (67,,05)) < — (P €un(ur) [6,]7) — 4(prd, 6%)
< 79|05 1 + r1oll511* < raall (85, 0 N1F xa, < r2ll fall?.
where 7;,r; and K; stand for positive constants. These relations imply that for some con-
stants ki, ko, k3, kg >0
P
4(1 +ryq)0?

By combining the last relation with (3.12]), we find that there exists £ > 0, which are
independent in (ug, pk, Ax) such that

”(51/4’ 6)\’ 5pa /llz))||2 S K’”(flﬂ f27 f3’ f4)||2Uh><Uh><Ah><Uh

UhXAhXUhXAh‘A
k

(8 ST, < FrllfLI? + K2l foll® + Ksllf311? + Kall fal|.

and therefore, we have for some & > 0

The last relation implies G, (y) is uniformly continuously invertible in V(y*) and futher-
more, it follows that we have ||Gp, (y)il”‘c(H}“H}Il) < R. O
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3.4. Globalization. The standard semismooth Newton method typically exhibits a
very small convergence neighbourhood for high values of . In order to globalize the semis-
mooth Newton method, we consider a modified Jacobi matrix in each iteration. The main
idea consists in reinforcing feasibility of the dual quantities (with suitable projections) in
the building of the Jacobian.

To describe the modification, let us first introduce the following notation:

A = 2 100 (e + T A
2
Po(u) = % _ % [t1.(u) + ta(w)] + 731 (u) + ta(w)] 1 (u)ta(w).

The proposed building process is based on the proved properties of the stationary point we
look for. Indeed, at the solution y*, we have the following:
e On A, ¢ = hy(Dpu*) = 2% On the other hand, h.,(Dpu)*Dpz = Dz

|D}LU*‘. |Dhu‘ B

(Dnu,Dpz) Dpu
[Dpul>  [Dpul
. . , _
approximation of hl (Dpu)Dp, on A,

Dy, (Dpu, Dy) q

Since ’% < 1, by projecting onto feasible set, we have an

k. (Dpu)) Dy, = — .
U (Dw)) Dn = 15 ™ Dyl (L, Ja]}
e On S,: ¢ = hy(Dpu*) = Pl(u)%, 1-— % < Pi(u) <1 and
th (Dhu th> (Dhu th>
W (Dyu)*Dyz = P — ’ D P ’ D
(Dw) Dz = ) (1t = PR D) ) B
(DnzDu")  (Dpu, Dyz) Dpu (Dpu, Dpz)
g — - 7D
<|DWP Dy ) D] T D Pr

Hence, similar to the above consideration, we have approximation of h’W(Dhu)Dh on
Sy

(DpzDul) {Pg(u) 1 ]<Dhu,Dh>} q

K., (Dpu))'D _{ - :
( ’y( h )) h |Dhu’2 Pl(u) \Dhu| ’DhU’ maX{la’Q‘}

By replacing (h/,(Dpu)) by (h’W(Dhu))T, we get a modified generalized derivative of FJ:

(3‘15) j}th (y)(éu, 5q7 5137 627 5)\)T =
(2AI — pAp)oy, — Divpdg + 2(u — f).0x
(hi,(Dhu))TcSu — dg
25u + (2)\1 — MAh)(sp — Dth(sz + 2p.5>\
(K. (Dpu)*Dpp) 6y + (B (Dpu))io, — 6.
PO+ (u— f).6p + BI— Ap)ox — G ((u— f).p — BARX) (p-0u + (u— f).6p — BALSN)

and the corresponding modified iteration for solving of Fj(y) = 0 with F}, in (3.1):

(3.16) j}h (Vi) (Fot1 — Y&) = —Fu(Fn)-

4. COMPUTATIONAL EXPERIMENTS

All methods and schemes developed previously were implemented in MATLAB and run in
a HP Blade multiprocessor system. The overall used algorithm is given though the following
steps:

Algorithm 4.1 (Domain decomposition-semismooth Newton algorithm).

0. Initialize yo = (uo, qo, Po, 20, No)? and set k = 0.
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1. At step k > 0, with yy, is known, solve dy = (8, 6y, Op, 62, 5x)T from (3.4)
G, (Y£)oy = —Fn(yk)

end update yp+1 = Yk + Oy.
2. Check stopping condition. If is not satisfied, set k = k 4+ 1 and repeat step 1.

Since the computations in each subdomain are independent from each other, these may
run simultaneously in parallel processors. We implemented a standard for-loop for iteration
k of the domain decomposition method and, within each k, a parallel MATLAB parfor-loop
with index n for computing the solution on each subdomain.

For the numerical experimentation we introduce some notation and several quantities of
interest, which are described next:
L Number of overlapping pixels
Mnonppe Semismooth Newton method on the whole domain
Morgppc  Semismooth Newton method with original Schwarz method
Mopippc  Semismooth Newton method with optimized Schwarz method

ery IApp — Al|, where App) is obtained by Mo,gppc or Moptppe, and A by Myonppe
ery lupp — ||, where upp is obtained by My,gppc or Mopppe, and uw by MyonpDC-
kmax Maximum number of subdomain SSN-iterations in all DD iterations

SSNR i 1 FE (Yo )| o0 Q5 C Q

T, Performing time (in seconds).

We also use the recently proposed structural similarity measure (MSSIM) (see [30]) to com-
pare the obtained images with the original one.

4.1. Uniform noise. In this first experiment, we consider the denoising problem with brain
scan images. The first set consists of images of 256 x 256 pixels and Gaussian noise with
zero mean and variance o = 0.0075. The original and noisy images are shown in Figure
The domain decomposition-semismooth Newton algorithms run with the parameter values
v =50, p=10"13, 3 =10"?, h = 0.01 and the stopping criteria SSNR < E, = 10~°. The
results are shown in Figure [£.2] From the surface representation of A, we can observe that
A is continuous and its shape is related to the one of the original image.

FIGURE 4.1. The first experiment: Original (left) and noisy (right) images.

In Table the performance of the different methods is compared. For all of them,
only the first 2 domain decomposition iterations were considered. The total number of
SSN iterations differ at most by one. The impact of the domain decomposition method
becomes clear when comparing the computing times of the methods, corresponding to one,
two and four subdomains. The computing time is significantly reduced. The effect of
the optimized transmission conditions can be realized when comparing the gap between
subdomains, which is much lower in the case of optimized transmission conditions (Mypppc)
than in the standard Schwarz method (Mor¢ppc)-

4.2. Non-uniform noise. For this experiment we consider input images of size 512 x 512,
with a Gaussian noise of ¢ = 0.014 on the whole domain and an additional noise of 0.016 on
some areas which are marked in red (see Figure [4.3)). The parameter values used are p = 0,
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FIGURE 4.2. Using the training set in Figure the optimally denoised images
are shown (left), surface plots of A (center) and images of A (right). The first row
corresponds to the result achieved without domain decomposition My..ppc; the
second and third row correspond to the results using domain decomposition (2 iter-
ations) without (M,,¢ppc) and with (M,pppc) optimized transmission condition,
respectively. Here we used 2 subdomains with an overlap of L = 40 pixels.

L=20 L =40 L=75
Method ™ e "y T T ® [T @ [ O [OTO [ @ | @ (O] 6 [ @
My onDDC 10 MSSIM = 0.894 T, = 83.71
o (a) 11 | 0.851 [ 5.3 2.71 [ 28.11 | 0.861 | 3.1 | 1.76 | 38.01
orgDDC (b) 0.853 | 5.9 | 3.60 | 10.09 | 0.858 | 3.7 | 2.05 | 19.99
M (a) 11 ] 0.869 [ 3.2]0.99 | 29.85 | 0.881 [ 1.9 | 1.01 | 39.92 | 0.883 [ 1.5 | 0.82 | 47.03 |
optDDC Ky 10 [ 0.865 | 3.6 | 1.22 | 11.03 | 0.877 | 2.3 | 1.09 | 23.81
TABLE 4.1. Numerical results for the first experiment. Rows (a): 2 subdomains;
(b): 4 subdomains. Columns (1): MSSTM; (2): er, (x1073); (3): erx; (4): T)p.

B =10"19 ~ =100 and h = 0.002 and the stopping criteria is SSNR < E, = 10~%. The
shape of A is shown in Figure [£.4]

The semismooth Newton method, on the whole domain, takes kn.x = 14 iterations and
T, = 1398.1(s) to converge. The denoised image has an M SSIM = 0.791. Meanwhile, the
Moyrgppc with L = 30 takes kpax = 15 iterations and 7, = 411.7(s) to converge, and yields
MSSIM = 0.769. The error with respect to A is given by ery = 0.97. With the same value
L = 30, the M,,tppc stops after kmax = 15 and T), = 433.9(s). The similarity measure is
MSSIM = 0.785 and the error with respect to A is given by er) = 0.51. The corresponding
images for all three methods are given in Figures [4.4] [4.5] and [£.6] respectively.

From Figures [4.4] [£.5] and [4.6] we can observe that the areas with higher noisy level result
in smaller pointwise values of A\. Moreover, from the tabulated results, one can realize that,
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FIGURE 4.3. The input images for the non-uniform noise experiment: original
(left) and noisy (right) images.

A

FIGURE 4.4. First row: Denoised image (left) and image form of A (right).

¥

FIGURE 4.5. Mygppc with L = 30: Denoised image (left) and A (right).

)

FIGURE 4.6. M,,:ppc with L = 30: Denoised image (left) and A (right).

in order to get good results for My.spcc, a sufficiently large value of L is required. This
has of course an increasing effect in the total computing time.

4.3. Large training set. In the next experiment, we compute the optimal functional pa-
rameter A from a training set of 10 pairs (uj, fi), 5 =1,...,10. The images (of size 256 x 256)
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were taken from the OASIS online database. A Gaussian noise with o = 0.025 was dis-
tributed on the images, and in the areas marked by red, additional noise with ¢ = 0.1 was
imposed (to all noised images at the same location).

The parameter values for this experiment are v = 50, u = 107, 3 = 107!? and h =
1/256. We utilized the optimized Schwarz method Mop,ppc, with overlapping size L = 5,
and stop after two iterates. A total amount of 24 subdomains were considered and the
computations were carried out in parallel. The semismooth Newton method, within each
step of Mypippc, stops whenever err < 0.01. The results are shown in Figure

FIGURE 4.7. Results of learning a spatial parameter A for a training set (uL, fr):
(a) Original image, (b) Noisy image, (c) Denoised image with M,,.ppc (24 subdo-
mains).

iy
uluunu}‘l\t\«:‘\{m}}m‘

iy 1‘\1‘.\1“1\“\“\IV“\|\\\“|1H'

FIGURE 4.8. Optimal parameter A for the experiment in Figure after 2 Schwarz iterations.

The performance of the overall algorithm for the cases of 4 and 24 subdomains is registered
in Table[.2] It becomes clear from the data, that there is a significant decrease in the total
computing time, when an increasing number of subdomains is considered. This, on the other
hand, does not significantly affect the quality of the obtained image, measured by MSSIM.
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10
We denote AV Ggapy := 15 2 [A]" — Agu\gmmn, j=1,...,10, A, = Aj|ﬂl and Q,,,Q, are
=]

subdomains.
Z#Q; | Fmax T, | MSST My | MSSIM oy | MSSIM 4oy | AV Gy,
4 17 2098.42 0.826 0.878 0.856 3.072
24 14 179.01 0.821 0.883 0.863 2.785

TABLE 4.2. Numerical results for Myuppc- MSSIMpyin, MSSIM yax,
MSSIM g4g: min, max and average MSSIM for ué“ with respect to u;, 7 =1..10.

4.4. Performance compared to other spatially-dependent approaches. In the last
experiment, we compare the results of our approach with the ones obtained with the spatially
adapted total variation method (SA-TV) proposed in [8]. For the comparison, we use the
well-known "cameraman" image (of size 256 x 256). The degraded image is corrupted with
a Gaussian noise with zero mean and variance ¢ = 0.01.

On a grid of size h = 0.01, the chosen parameters for My,,ppc are v = 100, p = 10714,
B = 10713 and that for SA-TV are ji = 0 and = 10~3. We use the stopping rule as in ,
ie., [lup — fl| < o.

(e) (f)

FIGURE 4.9. Comparison of SA-TV and My..ppc: (a) Original image, (b) Noise
image, (c¢) Denoising image of SA-TV, (d) Denoising image of Myonppc, (€) A of
SA—TV, (f) A of MNonDDC’-

The performance of SA-TV and Mny.,ppc is compared quantitatively by means of the
peak signal-to-noise ratio (PSNR) and MSSIM. The results of two methods are shown in
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Table [4-3] where it can be observed that our approach outperforms the SA-TV for the
tested image, with respect to both quality measures: (PSNR) and (MSSIM). Of course, in
our approach there is an additional source of information through the training pair.

Concerning the total computing time, the My.,ppc requires less seconds, even without
domain decomposition. As we discussed in the previous experiments, the computing time
can be significantly reduced by utilizing M,,.qpcc or Mopipcc-

Method | kmax T, | PSNR | MSSIM

SA-TV 9 35.67 | 27.71 | 0.807
MpyonDDC 4 24.01 | 28.35| 0.843
TABLE 4.3. Comparison of SA-TV and My..ppc

5. APPENDIX

Proof of Lemma[2.1]. For z,&, 7 € R?, by setting 7 = Z(v[z| — 1+ %), 2 =]z —1— %,

1 if ~lz| >0 1 if a<nylz]<b q 1 if 4)z]<a
= XS, = . an . = .
XA 0 otherwise Xs 0 otherwise XL 0 otherwise

weget (2 = xa [ ) xe {Le a2kl - 1 v - 1) 8

2y -1 Atits  PHB) (€ (26
e R (= = | AR

Moreover, by setting ¢(z,&) = { (€27) + (67) 3<Z’E‘>Z(|Z5ZT) + <|ZZ’|£3>}, we get

|z]3 |z]3
WI()lE 7] = XAZ¢<z,s>T+x$z{¢<z &) [ G (47 2l(yl2] — 1) — P58 + 1)
1 1 T
—(73|2|2 el g - zwﬂ " 67575‘%755(2’5’2(;2 )T}.

a) We first consider the case z,2,£,7 € R2. Indeed,
(al) If 2] < 2 and |2] < £, we have |R(z, £,&,7)| = [](2)[¢][7] — h5(2)[¢][7]] = O.

(a2) If |z] > 9 and |Z| < %, by a straight computation, we find |z — 2| > Hz| —Z|| > 2%2
and }R(z,é,{, ‘ = |o(z § | < 2%/4_:1 |€]|7|. This yields (|2
. -3
(a3) If |2|, |2| > ;, we have #, # < (% + #) and
T - T T T 5T
s [0 _BOEN] () (@) e )
2| |2 2| 12| 2| 2|
(,§) (2,6 _.
[ PEE BE T =:(35) — 51 — So — S3)T.
L1 [ERESREREN
One gets |S1]| = | ik ’ [W 5 |3] }(z —Z 5}’ ELER . We find for the
first term [ ‘3 + | |3] |< —-2,8] < (21761;3 |z — 2||¢] and for the second
|2 (2, €) — )| <l 3
< _
< gl
(S . .
=z e = 2 21— P
1 1 1 1 3240 .
< ¢z -2 |[’ e ’]< |2 = 2[l¢].

217 21122 12PIE T 2y +1)°
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Hence, [S17] < 48776\2 — 2|[¢]|7].

(2y+1)3
We also have |SQT\ = ‘(|2‘32|_||;|‘3‘?<§7T>| < [ﬁ + ﬁ] |z — 2||¢ll7] + %KHT’ and
|S37| = ‘Sé\;) |z|5 } = ‘5<|Z‘ZTJ||T3‘3 T>’ < ‘5|’|Z||ZT5\ZJ|3 HT|
Similarly, we have |So7| < (21554:1 ——T=|z — Z||¢]|T], |S37| < %]2 — z|&||7].
We get [Sor| < |§HT|H| IZT3|||3‘3 | + }(ziji - (2‘1;'%)2‘], where z = (z1,22),2 = (21, 22).
Similar to S37, we have ‘l || '|23|5:L3 | < 27“ 3\z Z|. By setting z = (z1,22) = r7 and
Z=1(21,2) = ﬁ one gets (zllji) - (Ziji ‘ < [7|3 + #“z -2+ ||Z‘3(2122\)ZT31|27«“‘53(2122)2"

2 (2122)2—|2[*(2122)2 | - |(B1Z2)2—(2122)2] :
We find ! ELEE ‘ < B + |z — \[‘ B |z|2‘z| + Mg} Without }oss
of generality, we assume that |z| < |Z|. One can verify that ’(21z2)z - (2122)73} < @ +

Ellz — 2)lz 4 20 and |2 - 2| < 2222 1t follows ‘(2122)@52122)2‘ < L

32 2
[So7| < léll7llz = 2{ oy + 125 + 5 + i + i} S ostiys 2 — 21[€] 7] and therefore,

IR(2,2,6,7)| < 5205512 — 2llgll -

(a4) Ifa < 9lz], 7|2 < bthen0 < #,# < L —1 <545 < 0and [¢(=, )|, ](]5(73 &) < aldl.
By setting q(2) = 3t5t5[473|2|(v]z] — 1) — ¥*645 + 1] — [¥3[2> = ¥%|2| + 5 — @] we have

s emr = L Taooe. ) — (2100 6] + 6| BBEOET)  H5EOED]
Rz 2,67) = {02060 €) — a(2)o(6. ) + 0 [ 1255 SE

Hence, we have

and |q(2)|,[q(2)] < (1 + 5 )(2 + %) + 6“’+5 We now analyze each term.
[a(2)e(2,€) — a(2)6(2,€)] 7| < |a() )6z, )|l + la(2)l]é(2,€) — d(2,€)|I7].

Similarly for (a3), we get H(b(z,f) - gf)(é‘,g)}T’ < %k Z||€||7|. Besides,

la(z) —q(2)

< Slit -4t

@ﬂamvr4>—fﬁ@+4

+ 2|65t | 492 — 1212] + 42121 — 12

2]%—ﬁ£@+$WP—Mﬂ+%W%4%-

From tit3 = +2|z|? — (a+b)|z| + ab, it follows |t5t5 — t{t5] < 2|22 = |2]*| + a +b]||z| — |2

Note that [|z[2 — [2]| = |(|z] — [2])(]z| + |2])]| < M\z — Z|. Hence, there exists constant
m1 () > 0 only dependent on 7, such that |[¢(z)¢ (z &) —q(2)o(2,)]7| < mi(v)|z—2]|€]|7]-
For the second term ‘t GIC ’ﬁxzz ) tit;(ﬁﬁg(éﬂ) ‘ =:T5(2,%,§), we have

B BBl OED] | D) (G OET
T2(sza€) < = : 2|Z‘|3 ‘ + |t1t2| <z >Z(|§Z ) - < |>(|ZZ ) .

We get again the expressions as in the first term and case (a3). Hence, there exists a constant
ma(y) > 0 only depending in v, such that |R(z, 2,&,7)| < ma(7)|z — 2||€||7|.
(a5) If a < v|z| < band v|2| < a then h”(2)[¢][r] = 0 and hence |R(z, 2,&,7)| = |h'(2)[¢][7]].

z ZZT T
Similarly to cases (aS) and (ad), we have |¢(z,&)||7| < % and w < [&]|7]-

From [¢3], [t3] < L it follows that J[tit3|[473|2](v]z| — 1) — ¥*6t5 + 1| < (v + 3)[t5] and
€ zzT
st S22 < oyt
Note that 0 < 7|2| < a < 7|z2|, hence 0 <t =7zl —a < vlz] — 'y|2\ and therefore
5] < (|z|=[2]) < ~|z—Z]. Besides, —7 \Z|+*—*\ =](vlel = 55) (V2] =1+ 55)] =
V|2 — %Htﬂ < +%|z — 2|. Hence there exists constant ms(y) > 0 only dependent on vy
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such that |R(z, 2,&,7)| < ms(y)|z — 2]|€]|7]-
(ab) If a < 7|2| < b and v|z| > b then

T
R(z.5,6,7) = [6(2.6) — 0(2,6)] 7 + {6%&@%
1 1
+ %tité [49%12] (v]2] = 1) = ¥*t5t5 + 1] p(2,€) + [73|Z|2 —7lel = 5 - M]QS(Z’Q}T'

We proceed as in case (a4) and get |¢(z,€) — ¢(2,8)||7] < ma(v)|z — 2||¢]|7| for some

constant my(y) > 0. For the remaining terms, from v|2| > b > ~|z| > a it follows 0<

5] = |ylz| = bl = b—lz| < 7I2] =412 < |2 — 2| Besides, ¥*|2]* = 12[z| — § — & =
vz + %] [v]z] — 1 - %] =v[vlz] + %]té We process similarly in case (ab) and have

[R(2,2,&,7)| <ma(y)lz = 2[[E]|7] + ms(ME][E]l7] < me(v)]z - 2[[€]|7]

where my(7y), ms(7y), mg(7y) are positive constants only dependent on +.
All other cases can be deduced from the previous ones, by an exchanging the roles of z and
2. It is easy to see that the above result also holds in case z, 2,&,7 € RN x RV (N € N*).

b) For u, , w, v € L2(2), b, ()] € L(@) and ([K, () — bt (@)}, 0) 12 < Collu—aflfollo]
(b1) We can write A/ (u)[w] in the following form

ot = Ky, [7 4 (B - Tl =P LT

2 ul
e B s POk - ) @ - 1)
(=1 yti(wta(u) | Pt(w)ta(u)? 1 {w,w)
( Iy > ' 2 >|ur]’““ ful?
{(u, w) {(u, w)

= G1(u)w + G2(U)XAMWU + G3(u)xs, u]? U

where ¢1(u) = 3 (y|u| -1+ %), to(u) = ylu|—1— % and X 4, XS, Xz, are defined similarly
to X 4., XS., XZ., but for u at each point of Q. It is easy to verify that G1(u), Ga(u), G3(u) €
|u|2 u]z < M?|w|? for a constant M > 0.
Hence, |1, (w)[w]|[L2 < |Gy (u )|!L°°HwHL2+M(HG2( )zoe +Gs(u)] oo ) [w]lp2 and therefore
. (u)[w] € L*(Q).

(b2) From the Lipschitz continuity of hi; (from R? to R?), it follows

L>(Q). Moreover, we have ‘XAU 2 Ly

thv() K., (t w‘<C’\u—un\ a.e.on Q, C,>0.

Since (B, (u) — hl(@)Jw € L2, we have ||[R] (u) — hL(@)]w]p2 < Cyllu — @l 2 ||w]lyz2, and also
for v € L2, we get

([ (u) = Py (@)]w,v) 1o < Cyllu — illpzllwllez|lv]ie,
where é% C’V, C, are positive constants only dependent in ~.

c) Use the formula of A7 (z) and process similarly as in part b), we have that hf(u) € L>°(€).
By the Lipschitz continuity of A (from R? to R?) it then follows that

1R5(w) = hE(@) e (o) < Myllu — |2

for some constant M., > 0 only dependent in ~. ([l
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