Sharp threshold for the ballisticity of the random walk on the exclusion process

With Daniel Kious (Bath)

Sharp threshold for the ballisticity of the random walk on the exclusion process

In this talk, I will overview works on random walks in dynamical random environments. I will recall a result obtained in collaboration with Hilario and Teixeira and then I will focus on a work with Conchon—Kerjan and Rodriguez. Our main interest is to investigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium, with density in [0,1]. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole. We prove that the speed of the walk, seen as a function of the density, exists for all density but at most one, and that it is strictly monotonic. We will explain how this can be seen as a sharpness result and provide an outline of the proof, whose general strategy is inspired by techniques developed for studying the sharpness of strongly-correlated percolation models.

  • Speaker: Daniel Kious (Bath)
  • Tuesday 11 March 2025, 14:0015:00
  • Venue: MR12.
  • Series: Probability; organiser: ww295.

Add to your calendar or Include in your list