## Random walk on the simple symmetric exclusion process

### With Daniel Kious (Bath)

# Random walk on the simple symmetric exclusion process

In a joint work with Marcelo R. Hilário and Augusto Teixeira, we in- vestigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole. The asymptotic behavior is expected to depend on the density ρ in [0, 1] of the underlying SSEP .

Our first result is a law of large numbers (LLN) for the random walker for all densities ρ except for at most two values ρ− and ρ+ in [0, 1], where the speed (as a function fo the density) possibly jumps from, or to, 0.

Second, we prove that, for any density corresponding to a non-zero speed regime, the fluctuations are diffusive and a Central Limit Theorem holds.

Our main results extend to environments given by a family of independent simple symmetric random walks in equilibrium.

- Speaker: Daniel Kious (Bath)
- Tuesday 10 March 2020, 14:00–15:00
- Venue: MR12, CMS, Wilberforce Road, Cambridge, CB3 0WB.
- Series: Probability; organiser: Perla Sousi.