Applied and computational Analysis Seminars
Convergence analysis of non-stationary and deep Gaussian process regression
With Aretha Teckentrup (University of Edinburgh)
Convergence analysis of non-stationary and deep Gaussian process regression
We are interested in the task of estimating an unknown function from data, given as a set of point evaluations. In this context, Gaussian process regression is often used as a Bayesian inference procedure, and we are interested in the convergence as the number of data points goes to infinity. Using results from scattered data approximation, we provide a convergence analysis of the method applied to a given, unknown function of interest. We are particularly interested in the case of non-stationary covariance kernels, and the extension of the results to deep Gaussian processes.
This is joint work with Conor Osborne (University of Edinburgh).
- Speaker: Aretha Teckentrup (University of Edinburgh)
- Thursday 26 January 2023, 15:00–16:00
- Venue: Centre for Mathematical Sciences, MR14.
- Series: Applied and Computational Analysis; organiser: Matthew Colbrook.